N .
GE-235

3 AUXILIARY
© &Y W ARITHMETIC

UNIT

REFERENCE MANUAL

 “ /> o . - GENERA/I.ELECTARI

1

Steven O MLl

GE-235
AUXILIARY

ARITHMETIC UNIT

JANUARY 1964

Revised June 1964

GENERAL @B ELECTRIC

COMPUTER DEPARTMENT

PREFACE

This manual describes the functions and operations of the GE-235 Auxiliary Arithmetic Unit
(AAU), It tells how the AAU operates and gives a detailed description of all instructions used
in writing the program, Included in the Appendix of the manual is a list of available AAU routines
which can be obtained from the Computer Department Program Library, P, O, Box 2961, Phoenix,
Arizona 85002, '

Detailed information for the GE-235 system is found in the following manuals:

GE-235 System Manual (CPB-267A)
GE-235 Central Processor Reference Manual (CPB-374),
This publication is a new edition and supersedes the GE-235 Auxiliary Arithmetic Unit Refer-

ence Manual (CPB-329), which should no longer be used, Send comments about this publication
to Technical Writing, General Electric Computer Department, Drawer 270, Phoenix, Arizona

85001.

@ 1964 by General Electric Company

GE-253

‘\J

w

GE-288

CONTENTS

Page
GENERAL DESCRIPTION
00 0) 0 X O 1
Compatibility i it it it i e it it e e et e e e 1
L0031 oo) O 2
2 100) o 12 2
) (Yo 1= - 3
Normalized Floating-Point Mode 3
Unnormalized Floating-Point Modettt 3
Double Precision Fixed-Point Modet 4
Trapping Mode . .. i it i it it ittt ettt sttt it 4
RegisterS . i i i it e e e e e e e e e e e 4
P =T 4] 3 o 4
BX-RegiSter . . i e e e e e e e e e e e e e e 6
QX-Register e e e e e e e e e e e e e e 6
B S - e == 6
SX - RegIster e e e e e e e e e e e e e 6
PROGRAMMING
Functions of the Central Processoro vnnnnnennn 7
General Instructions ittt ittt e e 7
Arithmetic and Load/Store Instructions v v v meeennn. 7
Test and Branch Instructions 7
Trapping MOde ittt ittt i et et ettt e e e 7
Word Formats i i i s e e e e e e e e e e 8
Instruction Words ittt ittt e e 8
Data Words . . .t i i e e e e e e e e e 8
Exponential Arithmetic i 13
Addition and Subtraction , i e e e e e e e 13
Multiplication i i e e e e e e e 13
DaviSION . e e e e e e e e e e e e e e e 14
Instructions e e e e e e e 14
General Instructions e e e e e e 15
Arithmetic Instructions v v it it e e e 18
Test-and-Branch oo v i i it e e e e e e e e e e 35
Program Considerations i e e 38
Setting the Calculation Mode e e e e e e e e e e e e 38
Setting the Trapping Mode i i it ittt i 39
OPERATING THE GE-235 AAU
Operating LOGIC i v v it it et e e et et e e et e e e e e 42
AAU Controls and Indicators i i i ittt i ittt it it et ie e 42
Central Processor AAU Indicatorso v v ittt ittt it e 47
APPENDIXES
AAU PROGRAM LIBRARY ROUTINES ittt ettt teteenn s A-1
LIST OF INST RUCTION S . . . i it ittt et et e s e et e et ee e B-1
AAU HALT CONDITIONS . . ittt ittt e ettt et et o et s st ea o C-1

Figure

10.
11,
12,
13.
14,
15.
16.
17.
18.
19.

20,

IAUSTRATIONS

Page
GE-235 AAU Subsystem it ittt e e e 2
Major Registers and Functional Logic Diagram 5
Fixed-Point Data Word Format "9
Format of a "Product" of a Fixed-Point Number 9
Floating-Point Data Word Format @ittt nennn. 11
Floating-Point Number it it it 12
Initiation of Arithmetic Instruction 19
Fixed-Point FAD, FSU e e e e e e 22
Floating-Point FAD, FSU i it i e e e e 23
Normalization of Floating-Point Numbers uu'uu... 24
Setting Holds and Initiation of Trap Operation Mode 25
Fixed-Point FMPttt it e e e 28
Floating-Point FMP it ettt i et e e e e e e e e 29
Fixed-Point FDVttt it it ittt e e e e e e e e e 32
Floating-Point FDV i ittt it e e et et e e 33
Settiﬁg Divide Check i ittt e e e e e 34
Normalization of Floating-Point FDV i vttt it e e e s e 34
Setting Mode for Calculationt eunnnnn 38
GE-235 AAU Control and Indicator Panel e e 43
Central Processor AAU Indicators , PP 47

- - -
= e : a
... . , .
oin - - - : :
- - - - . s L

235 AUXILIARY ARITHMETIC UNIT

GE

GE=-285

GE-288

1. GENERAL DESCRIPTION

The Auxiliary Arithmetic Unit (AAU) is one of the many devices designed to further increase
the capabilities of the GE-235 Information Processing System to handle mass detailed data,
It is an extension of the central processor with large registers permitting calculations of great
complexity and provides high-speed, double precision fixed-point and floating-point arithmetic
capability.

The arithmetic capability of the AAU includes add, subtract, multiply, divide, normalized and
unnormalized floating-point operands and double length (40-bit) fixed-point operands. The
central processor of the GE-235 system continues standard arithmetic operations when the
system includes an AAU,

FUNCTIONS

The central processor of the GE-235 system performs the following major functions for the
AAU:;

1, Instruction retrieval

2, Address modification, if required

3. Partial instruction decoding

4, Operand retrieval and storage, when required

5., Control of transmission of instructions and data to the AAU

6. Synchronization of AAU operations with the central processor
7. Formulation of branch decisions based-on AAU status indicators
8. [Execution of a program interrupt based on AAU trap signals,

The AAU has its exclusive, high-speed data path to the central processor making it an extension
of the arithmetic section and not a peripheral, Figure 1 illustrates in block diagram the GE-235

AAU subsystem,

COMPATIBILITY

The basic user-oriented design philosophy of the GE-235 system is the same as that of the
GE-205, GE-215, and GE-225, which have proved themselves fast, accurate, reliable, and

economical in widely divergent fields, As a result of their design similarity, all programs and
applications originally designed for the other members of the Compatibles/200 systems can
immediately be processed on a GE-235 having the same system configuration,

Storage Control Arithmetic
Section Section Section

Y > Central Processor

Priority Control
Section
AAU
0 1 2 3 4 5 6 Adapt J
-) [
~
Channels to
Peripheral Controllers
o Operator's Console
Indicators (Central
AAU Processor)
s Operator's Control
Indicator Panel
(AAU)

—
)

]
(Free Standing Unit)

Figure 1. GE-235 AAU Subsystem

CONTROL

All AAU instructions and information (operand words) originate with the central processor,
The AAU receives its instructions simultaneously with the central processor, The instruction
remains in the I-Register of the central processor until all indexing and accessing of memory
for that instruction are complete,

PRIORITY

The AAU is granted access to memory by the central processor priority control, The AAU
decodes and executes its own instructions, All communication with the central processor
memory is performed on a priority basis,

BE-258

MODES

The AAU performs calculations--at the option of the programmer--in one of the following
three arithmetic modes:

1, Normalized floating-point
2, Unnormalized floating-point

3. Double precision fixed-point

A trapping mode is provided on the GE-235 AAU, This is an important feature which saves
program running time by eliminating separate checking instructions following each possibility
of overflow, underflow, divide check, or illegal numbers, The trapping mode can be set along
with any one of the arithmetic modes under program control, .

The central processor is readily adaptable to computing ranges of numbers with fixed points,
such as whole numbers or whole numbers with fixed fractions. (For example: dollars and
cents where the fractional portion of the number is always two decimal digits,) When the calcu-
lations involve numbers that have varying format or floating point, such as in scientific calcu-
lations, the central processor would have to keep track of the fractional point (radix point)
by program, This is a lengthy and time-consuming operation; however, the GE-235 AAU simpli-
fies programming and saves time since the floating point calculation or consideration is made
by the hardware as normalized or unnormalized,

Normalized Floating-Point Mode

A normalized number is one in which the most-significant nonzero digit of the fraction is next
to the decimal point, For example, the decimal number 1234 would be:

.1234 x 104,

Both positive and negative numbers are adjusted so that the fractional value of the number
is in a prescribed range when using the normalized floating point mode, Normalized floating-
point numbers are described in detail under “Data Words” in Chapter 2,

Unnormalized FIoatihg-Point Mode

An unnormalized number is one in which zeros precede the most-significant nonzero digit
fraction to the right of the decimal point, For example, the decimal number 001234 would

be:
,001234 x 108,

In scientific calculations, the decimal point can be any place in a number, The mamner in which
two numbers are aligned makes a great deal of difference in the answer if the decimal point
is not in alignment., It is possible for the program to be written so as to align each and every
decimal point for each and every calculation, but this process is cumbersome, The GE-235
AAU simplifies programming of whole and fractional number calculations, saving time in the
process, :

BE-238

Double Precision Fixed-Point Mode

In the fixed-point mode, arithmetic operation in the AAU is the same as it is in the central
processor with the exception that the AAU registers are double length, Fixed-point numbers
can be in the forms shown below:

62478 (integer)
.62478 (fraction)
62.478 {mixed number)

Trapping Mode

This mode can be set or reset by the program with any one of the arithmetic modes, In the
trapping mode, an AAU overflow, underflow, illegal number, or divide check will cause a special
program interrupt in the central processor, The trapping mode, however, will not interfere
with the operation of the Automatic Program Interrupt option in the GE-235 central processor.

REGISTERS

All AAU data words are first placed in the memory of the central processor as two 20-bit
words, with bit meaning dependent upon the mode of operation selected, Executing a load op-
eration will bring the two data words from memory through the central processor M-Register
to be checked for parity, The AAU has a 40-bit buffer register which accepts the two 20-bit
words to form one 40-bit AAU word, an Instruction Register to hold AAU instructions, a 40~
bit Adder, and two other 40-bit registers, known as the AX- and QX-Registers. The size of
these two registers permits both floating-point and fixed-point calculations on larger numbers
than would normally be processed.

The AX-, BX-, QX-, and IX-Registers and the adder (SX) perform functions similar to their
counterpart registers (A, B, Q, and I) in the GE-235 central processor, Figure 2 is a block
diagram showing the data and control timing paths for the functional logic and the major regis-
ters of the GE-235 AAU, :

AX-Register
The AX-Register is a 40-bit accumulator which performs the following functions:
@ Holds the addend prior to addition and the most-significant bits of the sum after addition

e Holds the minuend prior to the subtraction and the most-significant bits of the differ-
ence after subtraction

o Holds the most-significant bits of the product after multiplication

& Holds the most-significant bits of dividend prior to division and the entire quotient
after division

e Receives the 40-bit operand (two GE-235 computer words) from the central processor
M-Register via the BX-Register during a load operation, and provides the 40-bit operand
to be stored in memory via the BX- and M-Registers during a store operation,

BE-238

Central Processor

Control

ol —

|
|
Lo
20 20
Transmitters I Receivers Central
| Processor
+ [Interface
GE-235 AAU
Control 4----17
I
!] l
| I ¥ |
20 20 !
Receivers Transmitters |
BX- IX-
Register Register
SX- —— Data Path
=
Adder — — =& Timing Path
[}
Y
AX-
Register
QX-
Register

Figure 2, Major Registers And Functional Logic Diagram

BE-288

BX-Register
The BX-Register is a 40-bitbuffer register and distributor which performs the following functions:
| o‘ Holds the addend prior to addition
® Holds the subtrahend prior to subtraction
e Holds the multiplicand prior to multiplication
e Holds the divisor prior to division
e During a load operation, it receives two 20-bit words sequentially from the M-Register,
assembles them into one 40-bit operand, and transmits the operand to the AX-Register,
During a Store operation, it disassembles the 40-bit operand received from the AX-

Register and transmits two 20-bit words, most significant half first, to the M-Register

e Performs all complementation that is required by the AAU,

QX-Register

The QX-Register is a 40-bit accumulator which performs the following functions:

e Conditionally holds the least-significant bits of the sum after addition
® Conditionally holds the least-significant bits of the difference after subtraction

e Holds the least-significant bits of the product after multiplication and the entire multi-
plier before multiplication

® Holds the least-significant bits of the dividend prior to division and the remainder
after division,

IX-Register

The IX-Register is a 7-bit instruction register. It contains the current AAU command being
executed, The IX-Register receives bits 2, 3, 4, 16, 17, 18, and 19 from the central processor

I-Register,

SX-Register

The SX-Register, or adder, performs the following functions:

Forty bit full binary adder during fixed point operations

Thirty-one bit full adder for the mantissa during floating point operations
Nine bit full adder for the exponent during floating point operations

Adds the carry to the one’s complement on all negate operations.

BE-238

T

~

S

N’

2. PROGRAMMING

The Auxiliary Arithmetic Unit is an on-line device and not a peripheral of the GE-235 system,
It has its own channel (see Figure 1) for access to the central processor and has no separate
controller,

FUNCTIONS OF THE CENTRAL PROCESSOR

The central processor performs the function of instruction retrieval, An immediate decision
is reached if the retrieved instruction is for the AAU. Once the AAU is given an instruction
to perform, it then operates independently of the central processor, The central processor
is restrained from receiving priority until the AAU instruction is completed,

General Instructions

All general instructions are examined for zero content of bits 5-15, If all bits are zero, the
instruction is immediately transferred to the AAU and executed,

Arithmetic and Load/Store Instructions

Either of these types of instruction may be address modified by the central processor. After
possible indexing, the instruction is executed by the AAU using the central processor I-Register
as the memory operand address register,

Test and Branch Instructions

If the instruction is a BAR (test and branch for the AAU), the central processor interrogates
the various status indicators of the AAU, The AAU replies to the query and the central pro-
cessor performs the appropriate branching decision,

TRAPPING MODE

The trapping mode is a standard feature of the GE-235 AAU, operating in a manner similar
to the Automatic Program Interrupt (API) of the central processor, The trapping mode is
not a normal. mode of operation of the AAU, Unless this mode is set by program, the main
program will not be interrupted in the event of overflow, underflow, divide check, or illegal
number errors, A discussion of the use of the trapping mode will be found under “Programming
Considerations,” page 39.

GE-258

WORD FORMATS

The formats for instruction and data words for the GE-235 AAU are compatible with the GE-
215/225 AAU,

Instruction Words

Instruction words are contained in a single address word consisting of 20 bits, The basic
formats for the 3 types of instruction words are as follows:

GENERAL INSTRUCTION WORDS

0 4 5 15 16 19
Operation Operand Address Suffix
Code Opr. Code

TEST-AND-BRANCH INSTRUCTION WORDS

0 4567 15 16 19
Operation XX Suffix
- Code Opr. Code

ARITHMETIC INSTRUCTION WORDS

Q 45 6 7 ' 19
Operation X X Operand Address
Code
Data Words

Data for all AAU operations can exist in memory in any of three different modes--fixed-point,
normalized floating-point, and unnormalized floating-point, All AAU data words exist in the
central processor memory as two 20-bit words with the bits of each word having meaning ac-
cording to the mode selected, Thus, when an instruction to load the AAU with the contents
of memory location 3200 (FLD 3200) is received and executed by the AAU, the contents of 3200
and 3201 are brought into the AAU. The format in which the contents of 3200 and 3201 are
interpreted depends upon the mode in which the AAU is operating,

GE-288

FIXED-POINT WORDS in memory are in the format as shown in Figure 3. To illustrate, the
FLD 3200 instruction is used. Note that the signs of word one and word two are identical for
fixed-point words. Thus, when two data words from memory enter the AAU, they appear in
the AX-Register as one 40-bit word. As shown, the fixed-point word in the AX-Register con-
sists of 38 information bits, plus two identical sign bits. Similarly, a fixed-point word in the
QX-Register also consists of 38 information bits and 2 sign bits.

" S_ = Sign of number (0 = +, 1 = =)

e
Fl’ F2’ F38 are bits of the number,
Word One - M (Even) Location 3200
S 1= 19
s, | ¥y »F 19
Word Two M + 1 (0dd) Location 3201
S 1 —19
Sm | Fao »F 4

In the AAU AX-Register:

S 1 19 20 21 39

S

e F]_ I 19 Sm on 4’F38

Fixed Point Data Word Format

Figure 3. Fixed-Point Data Word Format

Bit one--S_--is the sign bit of the entire word (38 bits), bit 20--S. --has no significance in
fixed-point words, Any arithmetic operation will cause bit position Sm 0 agree with bit position

Se-

If The Fixed-Point Number is the product of a multiply operation, it is stored in the AX- and
QX-Registers in the format shown in Figure 4,

S =20 = 39
- . F High
AX | sfF > F15]5¢]F20 38| order
Low
= I S |F re—
& Se F39 57| m| 58 76 Order

NOTE: Frg now has the value 20 and F1 has the value 275. All signs set to agree.

Figure 4. Format of a “Product” of a Fixed-Point Number

GE-258

An example of fixed-point numbers follows:

AX-Register Bit Position Remarks

Value S 1 -19 20 21 - 39
Largest Positive 0 1....1 0 1..... 1
+1 0 0....0 0 O..... 1
Zero 0 0 0 0 O0..... 0

-1 1 1...1 1 1..... 1 Two's complement notation for

negative numbers.

Largest Negative 1 0...0 1 O0..... 1

An Illegal Fixed-Point Number is not generated by the AAU, except as the result of overilow

or underflow, I« an arithmetic operation is attempted, the operation may or may not be per-
formed; however, the underflow and illegal numbers are set,

Example: Illegal fixed-point numbers

AX-Register SJ]1 - 19]20]21 - 39
1{0.....01}10 |0, . 0
110.....0]1 0..... 0

FLOATING-POINT WORDS consist of two parts, an exponent and a mantissa, The 4 basic terms

used in floating-point arithmetic operations are as follows:

1.

GE-288

Exponent, As used with the AAU, the exponent (or characteristic) is the 9 most-sig-
nificant bits (8 numeric bits and a sign bit) of a double word (see Figure 5). These
bits designate to what power of two the mantissa portion of the word must be raised,

Mantissa. In the AAU, the mantissa is the 30 least-significant bits of a double word,

The radix point (see Radix Point described below) for these 30 bits is assumed to be

to the left of the most significant of ‘the 30 bits, Thus, the mantissa is fractional in
value (see Figure 5),

The mantissa is multiplied by two raised to the exponential pdwer expressed in bits
0-8 to give the entire word the desired numeric value,

Radix Point, The point in any numbering system which separates the whole integers
from the fraction, Thus, the decimal point is a radix point for the decimal system;
a binary point is the radix point for the binary system. Because the computer and
AAU operate in binary rather than in decimal digits, the term “decimal point” should

‘be replaced by the term “binary point,”

‘Normalization, In the AAU, positive and negative numbers are normalized, or adjusted,
So that the mantissa lies in the prescribed range; the absolute value of the mantissa
must be greater than (or equal to) 1/2 and less than 1, Algebraically, this is expressed

as:

1/2 <(mantissa) <1

Positive Numbers Are Normalized by shifting the mantissa left until its most-significant bit
(bit 9 in the AX-Register) is a 1-bit. For each position shifted left, one is subtracted from
the exponent,

Negative Numbers Are Normalized by shifting the mantissa left until its most-significant bit
(bit 9 in the AX-Register) is a O-bit or there is a 1-bit followed by zeros in all other mantissa
bits. For each position shifted left, one is subtracted from the exponent,

The AAU generates normalized results of addition, subtraction, multiplication, and division
in the AX-Register if it has been set into the normalized floating point mode by the programmer,
The numbers to be operated on do not have to be in normalized form prior to the operation,

Floating-point numbers are stored in memory and in the AX-Register in the following forms
and formats, as shown in Figure 5. The binary point is assumed to be before the first bit (bit
9) of the mantissa, This format produces a binary number with a 30-bit mantissa and a binary
characteristic range of -256 to +255, This is approximately equal to a decimal number with

a 9-digit mantissa and a decimal range of 10~77 to 10+77. The fact that two words are used
allows one of the sign positions to be applied to the exponent,

Se = Sign of the exponent part

Sy, = Sign of the mantissa (fraction) part
E1 ve E8 = Bits of the exponent
My...Mgg = Bits of the mantissa (fraction)
0 1 -G 9 e
Se Exponent Mantissa Word One Address M (even)
01 -] 9
Sm ’ Mantissa Word Two Address M+ 1 (odd)
01) ‘ 8 9 19 20 21 39
S | | —— P L | P -0 AX

Figure 5. Floating-Point Data Word Format

If the Floating-Point Number is the result of multiplication, addition, or subtraction, the minor
half (low order) appears in the QX-Register in the format shown in Figure 6. The major half
(high order) will appear in the AX-Register, :

GE-285

01 8 9 19 20 21 : 39

QX Se ¢ ———— 3 M31— 41 Sm M42 60

Figure 6. Floé.ting- Point Number

The value of the QX exponent--e--is set equal to the value of the AX exponent--E~-minus thirty
(e=E-30), The sign of the QX fraction—-Sm-—is set to agree with the sign of the AX fraction--

S _.
m

The AAU operates in the fractional floating-point mode; that is, a fractional mantissa and an
integral exponent, The use of any AAU instructions for floating point operations assumes that
the memory operands are in the floating~point format,

An example of floating-point numbers follows:

AX-Register Bit Positions

Sj1 8l 9 19 | 20| 21 39

Largest Positive Of11...... 11(11..... 1.]1.0.].11..... 11
+1 0j00...... 01110..... 0.].0.}1.00..... 00
Smallest Positive 1]00...... 01{00..... 0.].0.1.00..... 01
0 0]00...... 00jo0..... 0.1.0.].00..... 00
Smallest Negative 1{00...... 01f11..... 1.].1.].11..... 11
-1 0]00...... 01]10..... 0.].1.1.00..... 00
_Largest Negative oJ11...... 11{00..... 0.].1.].00..... 01

The <“largest negative” number is the number farthest from zero with negative sign, The
«gmallest negative” is the number nearest to zero with negative sign,

An Illegal Floating-Point Number is one having a.mantissa which is one past the range of the
AAU in either the negative or positive direction, If any arithmetic operation is attempted, the
complete operation will not be performed, the underflow and illegal number will be set, Illegal
floating-point numbers are shown in the following examples:

Example 1,
AX-Register Bit Positions
Illegal floating s 1 - 8 9 19 20 21 - 39
point number (s) 1 any 0..... 0. 1..0....0
0 any 0..... 0. 1..0....0

This number has a mantissa which is one past the range of the AAU in the
negative direction,

GE-258

)

&

Example 2. The following number is treated as zero for any multiply or divide operation
. (not add or subtract), Any multiply or divide operation attempted will cause
the exponent to be reset to zero, The operation will then proceed as though

the number were zero,

Treated as zero s1 - 8 9 - 192021 - 39 .
01l..... 1 0...... 0 00...... 0 or any legal exponent
Example 3. The following number has an exponent which is one past the range of the AAU

in either the positive or negative direction, It may be loaded and stored
and operated on arithmetically, The exponent will be treated as —25610.

+
1 x 2%256 S1 - 8910 - 192020 - 39

1 0..... 010....... 00 O0...... 0 or any legal mantissa
except all zeros

SUBROUTINES are required initially to create floating-point words from BCD data or to create
BCD words from floating-point format, This conversion from one to another is possible using

conversion routines CD225C2,006/8 obtained from the GE Program Library or through the

local sales office of the General Electric Computer Department,

EXPONENTIAL ARITHMETIC

To perform arithmetic operations in the floating-point format, several requirements must be
met, For addition and subtraction problems, the exponents of the numbers involved must be
equal, - It is not probable that a common exponent will be used in all problems; however, the
AAU automatically adjusts exponents, The AAU adjusts the exponent with the smaller numeric
value, Adjustment is accomplished by automatically shifting the mantissa of the word with the
smaller exponent right and incrementing its exponent by the number of positions shifted,

Addition and Subtraction

Once exponents are equalized, addition or subtraétion of the mantissas can occur. The exponent
of the answer is the adjusted exponent while the mantissa of the answer is the sum or difference
of the shifted mantissas,

Multiplication

For multiplication, exponents are added and mantissas are multiplied, The resultant exponent
in multiplication is the algebraic sum of the original exponents, while the resultant mantissa is
the product of multiplying the original mantissas.

BlE-288

Division

In division, the exponent of the divisor is subtracted from the exponent of the dividend, and the
mantissa of the dividend is divided by the mantissa of the divisor, The resultant exponent
is the algebraic difference between the dividend and the divisor exponents, The resultant man-
tissa is the result of the algebraic division of the dividend mantissa by the divisor mantissa,
In summary, floating-point division causes the subtraction of exponents and division of mantissas,

OVERFLOW AND UNDERFLOW in floating-point arithmetic operations, can result during both
the normalized and unnormalized arithmetic modes.

Overflow occurs if the exponent of a final result in the AX-Register exceeds +3'7'78 (+22510).

Underflow occurs when the exponent of a final result in the AX-Register becomes less than

OVERFLOW OR UNDERFLOW can result at any of these times:
e | During the formétion of the initial estimate of the result exponent
o During a right shift one and add one as a result of mantissa overflow
e During the normalization of a result (normalized mode), Normalization involves shifting
the mantissa left N places and subtracting N from the exponent, possibly causing under-

flow, N being the number of leading zeros in a positive mantissa or leading ones in
a negative mantissa,

No single AAU instruction will ever result in setting both overflow and underflow,

Whenever underflow occurs, the AX-Register is cleared to zero if the AAU is in either the
normalized or unnormalized floating-point modes. This assures that zero is always a valid
replacement for the true result when underflow occurs., The clearing of AX does not cause reset
of the underflow,

INSTRUCTIONS

Instructions for the GE-235 AAU are divided into 3 categories, as follows:
| 1. General Instructions:

Confrol (sets mode of operation)

Data Transfer (load/store) within the AAU

a,
b.
e. Reset (underflow/overflow)
d. Normalization

2. Arithmetic Instructions:

a, Arithmetic operations: add, subtract, multiply, and divide
b, Data Transfer (load/store) between the AAU and central processor

3. Test-and-Branch Instructions,

GE-258

The description of instructions in this manual use the following format, explained in the key

/j below,

MOVE AX TO QX

®@ ® ® ®

1, Name of instruction (operation to be performed).

2, General Assembly Program mnemonic operation code,
3, General Assembly Program Operand field symbol:

a, M - indicates that the operand field in this instruction is occupied by the address
of a memory location (address may be either actual or symbolic),

b. A three-character mnemonic code indicates the specific condition (true or false)
of a test and branch instruction,

4, General Assembly Program symbol X field:

a. X - indicates that the address in the operand field of the instruction may be auto-
matically modified by using address modification words, Omission of this symbol
indicates the instruction cannot be modified in this way,

L b. A - indicates that the AAU registers are affected by the instruction in a similar
S manner to the registers of the central processor,

5, Representation of the machine coding of the instruction in octal notation,

General Instructions

General Instructions do not require memory reference, The operation codes are defined by
bits S-4 and 16-19 of the instruction word, with all other bits zero, The general instructions
are further defined by type of instruction, as follows:

Control

Data Transfer (within the AAU)
Reset

Normalize

-

B

CONTROL INSTRUCTIONS set the mode of operation to be performed upon the data words
received, The GE-235 AAU is set to normalized floating-point mode under the 3 following
conditions:

1, Power-on time
2. When the CLEAR switch is depressed on the AAU
3. When the RESET MODES switch is depressed on the central processor console.

GE-288

15~

It is necessary to set the mode of operation by a SET MODE instruction before giving an arithmetic
instruction to obtain positive control over the AAU, Once a SET MODE instruction is executed,
the AAU executes all arithmetic instructions in that mode until the mode is changed by another
SET MODE instruction,

SET FIXED- POINT MODE

SET FIXPOINT 3500010

The AAU is set to execute AAU arithmetic instructions in double precision fixed-point mode,

SET NORMALIZED FLOATING-POINT MODE

SET NFLPOINT 3100010

The AAU is set to execute AAU arithmetic instructions in normalized floating-point mode,

SET UNNORMALIZED FLOATING-POINT MODE

SET UFLPOINT 3200010

The AAU is set to execute AAU arithmetic instructions in unnormalized floating-point mode,

SET TRAPPING MODE

SET TRPMODE 3100001

The AAU is set to interrupt the central processor upon detection of subsequent overflow, under-
flow, or divide check conditions, An illegal number causes an underflow condition in the trappmg

mode

The ».ov'erfiev'r_ hold, underflow hold, divide check, and illegal number statuses are not reset
by this instruction,

The AAU remains in the trapping mode until executlon of a SET NTPMODE instruction or until
the RESET MODES switch on the central processor console is depressed,

SET TRAPPING MODE OFF

SET NTPMODE 3200001

The AAU trapping mode is turned off,

The overflow hold, underflow hold, divide check, and illegal number statuses are not affected
by this instruction,

BE-235

DATA TRANSFER INSTRUCTIONS are similar to certain central processor data transfer in-
structions, They involve transfer of data between arithmetic registers within the AAU and
are specified by mnemonic codes similar to those for the central processor, AAU data trans-
fer instructions are identified by placing the letter A in the X column (card column 20) of the
General Assembly Program coding sheet,

CLEAR AX-REGISTER

CAX ‘ A 3200005

The AX-Register of the AAU is cleared to all zeros.

CLEAR QX-REGISTER

CeX A 3500005

The QX-Register of the AAU is cleared to all zeros,

LOAD AX FROM QX

LAQ A 3600002

The contents of the QX-Register replace the contents of the AX-Register. The contents of the
QX-Register are unchanged,

LOAD QX FROM AX

LOA A 3200002

‘The contents of the AX-Register replace the contents of the QX-Register. The contents of the

AX-Register are unchanged.

MOVE AX TO QX

MA@ A 3100002

The contents of the AX-Register replace the contents of the QX-Register, The contents of
the AX-Register are reset to zeros,

EXCHANGE AX AND QX

XAQ A 3500002

The contents of the AX- and QX-Registers are interchanged,

GE-2858

RESET INSTRUCTIONS are used to reset the OVERFLOW HOLD, UNDERFLOW HOLD, and
DIVIDE CHECK indicators,

RESET INDICATORS
RIN 350)0004

The OVERFLOW HOLD, UNDERFLOW HOLD, and DIVIDE CHECK indicators are turned off.
The internal illegal number indicator is also turned off,

RESET OVERFLOW HOLD

ROV 3100004

The OVERFLOW HOLD indicator is turned off,

RESET UNDERFLOW HOLD

RUN 3200004

The UNDERFLOW HOLD indicator is turned off,

The OVERFLOW HOLD, UNDERFLOW HOLD, and DIVIDE CHECK indicators will have been
set as a result of overflow, underflow, divide check and illegal number conditions,

NORMALIZE INSTRUCTION, This instruction operates correctly only on floating-point data,
The instruction itself is not mode dependent, and operates correctly in all three arithmetic modes.

NORMALIZE AX AND QX

NOX 3100005

The floating-point operand in the AX-and QX-Registers is normalized by shifting the mantissa
left until a 1-bit is detected in the most-significant bit position, AX (9) for positive numbers,
or a 0-bit is detected in AX (9) for negative numbers, For each bit position shifted, one is sub-
tracted from the exponent in AX, Bits from QX (9) shift into position AX (39). After normal-
ization, the exponent in the QX is set to 30 less than the exponent of AX, The sign of QX is set

to the original sign of the AX,

Zero is defined as a normalized number,

Arithmetic Instructions

Arithmetic instructions (add, subtract, multiply, and divide) include data transfer (load/store)
operations on data words according to the mode (fixed, normalized, or unnormalized) as specified
by a control SET MODE instruction. Figure 7 is an illustration of the initiation of an instruction.

GE-288

Ee

5

Overflow
Underflo

Load BX=~
Y (even)
Y + 1 (odd)

Fixed=-Point

@ Floating Point

Figure 7, Initiation of Arithmetic Instruction

Bits S-4 of the instruction word defines the operation to be performed, Bits 5-6, if set, specify
index word modification, Bits 7-19 specify the operand (memory) address of the data word.

If index word modification is specified, the central processor performs the required index
modification, The instruction is then executed by the AAU using the central processor I-Reg-
ister as the memory operand address register,

If index word modification is not specified, the operand address must be an even numbered
location in memory and be greater than 15 for proper execution. If the address is odd, either
the contents of the odd location will be loaded into both halves of the BX-Register, or the contents
of BX will be stored so that first the most-significant half of BX (S-19) appears in the odd
location and then BX (20-39) is written over BX (8-19) in the same odd location,

Floating point operations assume that the operands of the data word are already in floating-
point format, If the operand is not in floating-point format, it can be converted by means of
a subroutine furnished for this purpose (CD225C1.006/8),

ARITHMETIC OPERATIONS are performed by the AAU upon operands whose memory address
is greater than 15, unless the instruction is index modified, Instructions for arithmetic opera-
tions are; FAD, FSU, FMP, and FDV,

@E-235

Each instruction is described for each of the 3 operating modes: fixed, normalized, and un-

normalized,
ADD
M X 31MMMMM

FAD

The contents of memory location M and M+l are added algebraically to the contents of the
AX-Register, The contents of M and M+1 are unchanged,

Fixed- Poinf Mode

The sum of the contents of M and M+1 plus the contents of AX is left in AX-Register
with bits 0 and 20 (sign bits) set to agree

OX Register is unchanged

Overflow is set if the capacity of the AX-Register is exceeded in a positive direction
during the add operation, The AX-Register remains in an overflow condition,

Undérﬂow is set:

1. If the capacity of the AX-Register is exceeded in a negative direction during an
add operation, The AX-Register remains in an underflow condition,

2, If an illegal number is detected at the start of the operation in either the AX- or
BX-Registers, An illegal number causes both underflow and illegal number con-
ditions to be set. '

Normalized Floating Point Mode

BE-288

The floating-point number in M and M+1 are loaded into the BX-Register
QX -Register is cleared

A check is made fo determine if either the AX- or BX-Register contain an illegal
number in the mantissa, . If either or both do, the arithmetic operation is terminated

. with an UNDERFLOW (and illegal number) indication in the AAU

The AX- and BX-Registers are examined for zero content and if either are found
to contain zeros, the nonzero number is placed in the AX-Register and the contents
are normalized, If neither AX nor BX are zero, then the exponents are compared

If the exponent of the number in BX is algebraically smaller than the exponent in AX,
BX and AX are interchanged--the smaller exponent is placed in AX

Exponents are aligned by right shifting the AX-Register, adding‘one to the exponent
for each position shifted, until the exponents are equal, Bits shifted out of AX~39
are shifted into QX-9; bits shifted out of QX-39 are lost

When the exponents are aligned, the mantissas are algebraically added and mantissa
overflow, if it occurred, is corrected, = The sum of the mantissas in AX and QX is
normalized

-9oN -

e Mantissa overflow is corrected by shifting the mantissa one bit position to the right
and adding one to the exponent

¢ AX and QX mantissas are examined for zero content and, if found to contain zeros,
the exponents are cleared and the operation is terminated, The AX- and QX-Registers
are cleared '

e If AX and QX mantissas are not zeros, the sum in the AX- and QX-Registers is normal-
ized, Leading zeros (for positive mantissas) or ones (for negative mantissas) are
stripped by left-shifting AX and QX and subtracting from the exponent. Bits from
QX-9 are reintroduced into AX-39; AX and QX are left-shifted together; Zeros are
introduced into QX-39,

e Exponent of QX is set to AXp-30 so that the minor half of the sum will be properly
scaled, If QXp underflows, no error is set,

® The QX mantissa sign (bit 20) is set to the same value as the AX mantissa sign
® A check is made to determine if overflow or underflow occurred.

e Overflow is set if the exponent sum in the AX-Register exceeds +255,3. AX- and
QX-Register remain in an overflow condition

e Underflow is set:

1, If an illegal number is detected in the mantissa at the start of the operation in either
the AX or BX Registers

2, If the exponent sum in AX is less than -256;3. The AX- and QX-Registers are
cleared,

Unnormalized Floating-Point Mode, Same conditions prevail as set forth for normalized float-
ing point mode, except the sum of mantissas in the AX- and QX-Registers is left in unnormalized
form,

An execution of a fixed point add operation is shown in Figure 8,
Figures 9 and 10 illustrate the execution of a floating-point add operation,

Figure 11 shows how holds are set and the initiation of the trap operation takes place.

BE-235

Subtract ?

Yes

—p> AX

AX + BX

A§1§2g3¥ ? Underflow ?

Yes

Yes

Set
llegal No.

Figure 8. Fixed-Point FAD, FSU

GE-258

Subtract ?
Yes

BX ——#BX
m m

Is AXm or BX
Illegal ?
Yes
" Set Exchange
Illegal No. AX & BX

Exchange
AX & BX

AX Overflow?
m

Yes

Shift Reset
Right AX & QX

i a

Figure 9. Floating-Point FAD, FSU

BE-289

Normalize
Mode ?

shift Left

AXm Normalized ?

AXE —BO-ADQXE
Set
QX (20) = AX(20)

v \
AXE Overflow ? No

AXE Underflow ?

Yes Yes

Figure 10, Normalization, Floating-Point Numbers

GlE-258

P

Set Overflow & Set Underflow &
Overflow Hold Underflow Hold

Trap Mode ?

Yes

Trap Mode ?

Yes

Initiate Initiate
Overflow Underflow
Trap Trap

:

Figure 11, Setting Holds and Initiation of Trap Operation Mode

SUBTRACT

FSU

M X 32MMMMM

The contents of memory location M and M+l are algebraically subtracted from the contents
of the AX-Register, The contents of M and M+1 are unchanged,

Fixed-Point Mode

GE-288

The contents of M and M+l are loaded into the BX-Register, BX is complemented
and added algebraically to the contents of the AX-Register, The difference is left
in the AX-Register with bits 0 and 20 (sign bits) set to agree

The QX-Register is unchanged

Overflow is set if the capacity of the AX-Register is exceeded in a positive direction

during a subtract operation, The AX-Register remains in an overflow condition

Underflow is set:

1. If the capacity of the AX-Register is exceeded in a negative direction during a
subtract operation. The AX-Register remains in an underflow condition.

2. If an illegal number is detected at the start of the operation in either the AX-
or BX-Registers.

Normalized Floating-Point Mode

BE-288

The floating-point number in M and M+l is loaded into the BX-Register. The BX
mantissa is complemented

The QX-Register is cleared

A check is made to determine if either the AX- or BX-Register contains an illegal
number in the mantissa, If either or both do, the arithmetic operation is terminated
with an UNDERFLOW (and illegal number) indication in the AAU

If both registers contain legal numbers, they are examined for zero content and if
either one is found to contain zeros, the nonzero number is placed in the AX-Register
and the contents are normalized., If neither register contains zeros, then the exponents
are compared

I the exponent of the number in BX is algebraically smaller than the exponent in AX, -
BX and AX are interchanged--the smaller exponent is placed in AX

Exponents are aligned by right-shifting the AX-Register, adding one to the exponent
for each position shifted, until the exponents are equal, Bits shifted out of AX-39
are shifted into QX-9; bits shifted out of QX-39 are lost

When exponents are aligned, the mantissas are algebraically added and mantissa over-
flow, if it occurred, is corrected, The sum of the mantissas in AX and QX is normalized,

Mantissa overflow is corrected by right-shifting the mantissa one bit position and
adding one to the exponent,

AX and QX mantissas are examined for zero content and if found to contain zeros
the exponents are cleared and the operation is terminated, The AX- and QX-Registers
are cleared

If AX and QX mantissas are not zeros, the difference in the AX- and QX-Registers
is normalized. Leading zeros (for positive mantissas) and ones (for negative mantissas)
are stripped by left-shifting AX-QX and subtracting from the exponent; bits from QX-9
are reintroduced into AX-39; AX and QX are left-shifted together, Zeros are introduced
into QX-39

Exponent of QX is set to AXp-30 so that the minor half of the difference will be properly
scaled, If QX underflows, no error is set

The QX mantissa sign bit (20) is set to the same value as the AX mantissa sign
A check is made to determine if overflow or underflow occurred

Overflow is set if the exponent result in AX-Register exceeds +2551g. AX- and QX-

Registers remain in an overflow condition

Underflow is set:

1. If an illegal number is detected in the mantissa at the start of the operation in
either the AX or BX-Registers,

2. If the exponent result in AX is less than -25610. The AX- and QX-Registers
are cleared,)

Unnormalized Floating-Point Mode, Same conditions prevail as set forth for normalized float-
ing-point mode, except: difference of mantissas inthe AX- and QX-Registers is left in unnormal-
ized form,

Figure 8 illustrates the execution of the FSU instruction during a fixed-point mode of operation,

Figures 9 and 10 illustrate the execution of the FSU instruction during the floating-point mode
of operation,

MULTIPLY

FMP M X 35MMMMM

The contents of memory location M and M+l are multiplied algebraically by the contents of
the QX-Register, The contents of M and M+1 are unchanged,

Fixed-Point Mode

e M and M+l are loaded into the BX-Register, The AX-Register is cleared, Bit 20
of the QX-Register is set equal to QX-0

e A check is made to see if either BX- or QX-Registers ¢ontain an illegal number, If
neither or both do, the arithmetic operation is terminated with an UNDERFLOW (and
illegal number) indicators in the AAU

e If both Registers contain legal numbers, they are examined for zero content and if
either or both contain zeros, the AX- and QX-Registers are cleared and the arithmetic
operation is terminated

e If the BX- and QX-Registers contain legal nonzero numbers they are multiplied and
their product is stored in the AX- and QX-Registers. The product is a 76-bit fixed-
point number, right adjusted in AX and QX with four identical sign bits

e Overflow is not possible with legal nonzero numbers, therefore overflow is not tested

e Underflow is set if an illegal number is detected at the start of the operation in either
the BX- or QX-Registers,

Normalized Floating-Point Mode

e M and M+1 are loaded into the BX-Register. The AX-Register is cleared
e The 'exponent of QX is transferred to AXp

e A check is made to determine if BX,, or QX contain an illegal number, If either
or both do, the operationis terminated andan UNDERFLOW (and illegal number) indication
in the AAU

e If both registers contain legal numbers, the exponents of AX and BX are added and
stored in AXp. This completes the addition of the exponents operation and the sum
of QXg and BXg and stored in AXE

GE-258

e The BX and QX mantissas are examined for zero content and, if found to contain zeros,
the operation is terminated with AX- and QX-Registers cleared

e If the mantissas of BX and QX are nonzero, legal numbers, the mantissas in AX and
QX are shifted right together until a 1-bit is detected in position @X-39, Addition
or subtraction of AX,, plus BXp, forms the first partial product in AX and continues
in this fashion until a 60-bit product is formed in AX,,, and QX;,. The products is
normalized and the exponent in QX-Register is set to AXp-30. If QXy underflows,
no error is set., The mantissas signs QX(20) and AX(20) are set to agree

® A check is made to determine if overflow or underflow occurred
e Overflow is set if the product in the AX-Register exceeds +255(

¢ Underflow is set:

1. If an illegal number is detected in the mantissa at the start of the operation in either
the QX- or BX-Registers,

2. If the exponent product in AX is less than -256;g. The AX- and QX-Registers
are cleared,

Unnormalized Floating-Point Mode, Same condition prevails as set forth for normalized floating-
point mode, except:

Product in AX- and QX-Registers is left in unnormalized form,
Figure 12 illustrates the execution of the FMP instruction during a fixed-point mode of operation,

Figure 13 illustrates the execution of the FMP instruction during a floating-point mode of operation.

T

P
=3

(QX) (BX)—»AX,
QX Make all
Signs Equal

QX or BX
=07

Yes

Set
Illegal
No.

Figure 12, Fixed-Point FMP

GlE-255

Reset

W4

(BX) x (QX)

0X or BX No AXE + BXE
—» AX QX

Illegal ? — AXE

Set
Illegal
No.

Figure 13, Floating-Point FMP
DIVIDE

FDV M X 36 MMMMM

The contents of AX and QX are divided algebraically by the contents of M and M+1. The contents
of M and M+1 are unchanged,

Fixed-Point Mode

e M and M+1 are loaded into the BX-Register

e If the AX-Register is negative (AX-0 determines the sign of the entire number in
AX- and QX-Registers), the AX- and QX-Registers are complemented

e A check is made to determine if either the AX-, QX-, or BX-Registers contain illegal
numbers, If any of them do, the arithmetic operation is terminated with an UNDER-
FLOW (and illegal number) indicator set in the AAU, The original dividend is left
in the AX- and QX-Registers (or the 2’s complement if the original dividend was neg-
ative)

GE-258

If the registers contain legal numbers the BX-Register is checked to determine if
it contains zeros (this is the divisor), If the divisor in BX is zero, a divide check
error condition exists and the OVERFLOW and DIVIDE CHECK indicator will be set,
If the subsystem is in the trapping mode the divide check error condition will not
set the OVERFLOW indicator, but it will set the DIVIDE CHECK indicator,

A check is made to determine if the absolute value of that part of the dividend in the
AX-Register is equal to or greater than the absolute value of the divisor. If true,
the instruction is terminated with a divide check error and the OVERFLOW and DIVIDE
CHECK indicators are set, The original dividend is in the AX- and QX-Registers
(or the 2’s complement if the original was negative)

A check is made to determine the zero content of the AX- and QX-Registers, If they
are zero, the instruction is terminated

The contents of the AX- and QX-Registers are divided algebraically by the contents
of the BX-~Register, The quotient is stored in the AX-Register, with the remainder
in the QX-Register and the sign bits set to the sign of the original dividend

The QX-Register is tested for an illegal number. The only way that QX can contain
an illegal number is when the remainder is zero and the sign of the original dividend
is negative, If it is found to be illegal, the QX-Register is cleared

The AX-Register is tested for an illegal number., The ohly way that AX can contain
an illegal number is when the quotient is zero and the sign negative, If it is found
to be illegal, the AX-Register is cleared

Overflow is set if a divide check error is detected during a divide operation. The

AX- and QX-Registers are not cleared

Underflow is set if an illegal number is detected in either the AX-, QX-, or BX-Reg-

isters,

Normalized Floating-Point Mode

GE-258

The floating-point number in M and M+1 is loaded into the BX-Register

If the dividend is negative--AX-20 determines the sign of the dividend--the mantissas
of AX and QX are complemented

The exponent of the remainder is formed by subtracting 30 from the exponent in AX,
AXp-30 to QXp. If the exponent underflows, itis left in QXp as a positive number
(-255 -30 = +29) and underflow is not set

The mantissas of the AX-, QX-, and BX-Registers are checked for illegal numbers,
If there is an illegal number present, the operation is terminated with an UNDER-
FLOW (an illegal number) indicator in the AAU s

The exponent of the quotient is formed by algebraically subtracting the divisor expoﬂqhiﬁ
from the dividend exponent '

A check is made to determine if the mantissa in the BX-Register contains zeros, If
50, the OVERFLOW and DIVIDE CHECK indicators are set in the AAU

A check is made to determine if the absolute value of the dividend mantissa is equal
to or greater than the absolute value of the divisor mantissa. If it is, the mantissas
of AX and QX are shifted right one place and the exponents are increased by one

D

e Another check is made to determine if the absolute value of the dividend mantissa
is equal to or greater and if it is the OVERFLOW and DIVIDE CHECK indicators are
set in the AAU, If they are not equal to or greater, the mantissas of AX and QX are
checked for zero

e If both AX- and QX-Registers contain zero, AX and QX are cleared and the arithmetic
operation is terminated

e If the mantissas of AX and QX are nonzero, the contents (mantissas) are divided alge-
braically by the mantissa of BX, The quotient is stored in AX and the remainder
is stored in QX with the sign of the original dividend

o The mantissa in AX is normalized

e The mantissa of QX is tested for illegal number or zero content, If it is found true,
the AX-Register is cleared

e Overflow is set:
1. If the exponent of the quotient in the AX-Register exceeds +2551.

2. If a divide check error is detected at the start of the operation and the AAU is in
the non-trapping mode, Overflow is not set if the AAU is in the trapping mode.

e Underflow is set:

1. If an illegal number is detected in the AX-, QX-, or BX-Registers

9. If the resultant AX exponent is less than +256, the AX- and QX-Registers are
cleared

Unnormalized Floating-Point Mode, Same conditions prevail as set forth for normalized floating-
point mode, exeept:

Quotient in the AX-Register is left in unnormalized form,

Figure 14 illustrates the execution of the FDV instruction during a fixed-point mode of operation,

Figures 15, 16 and 17 illustrate the execution of the FDV instruction during a floating-point mode
of operation,

GE=288

BE-289 -

Take 2's
Complement of
AX, QX

AX Positive ?

BX = 0 or
JAX) 2 1BX] 7 |

((AX,QX) or
BX Illegal ?

Yes

Set
Illegal
No.

(AX, QX)+ BX
ey AX
Remainder — QX

QX Illegal ? AX Illegal ?

Figure 14. Fixed-Point FDV

. Comp lement
AX_ Negative?
CRED - i
No r
AXp - 30
—» &g

Is AXm QX or
BX, Illegal?

Yes

Set
Illegal No

Right-Shift
AX+1—p AXp

QX+ QXgy

No
(IAXm, mel2 Ime

Yes

AX QX + BX
m ooom m
.Axm

Remainder"’QXm

Figure 15, Floating-Point FDV

BE-258

®

Initiate
Divide Check
Trap

OVERFLOW
HOLD

Figure 16. Setting Divide Check

No

Normalized \
Mode]

Yes

¢

AX,, Normalized No

Yes

Left-Shift
AX - 1-PAX,

Illegal
or Zero?

AX Overflow? AX Underflow?

Figure 17, Normalization Floating-Point FDV

GE-255

R

DATA TRANSFER INSTRUCTIONS are those which transfer data between the AAU and central

processor, The instruction must specify a memory location address greater than 15 unless it
is index modified. The instructions for data transfer are FLD and FST, They are not dependent
on an operating mode, ’ '

LOAD AX REGISTER

FLD M X 30MMMMM

e Contents of M and M+] replace contents of AX-Register,

e Contents of M (even) are loaded into AX 0-19

e Contents of M+1 (odd) are loaded into AX 20-39
e Contents of M and M+1 are unchanged

e Contents of M (odd) are loaded into AX 0-19 and 20-39.

e Illegal numbers may be loaded, Only when an attempt is made to use the illegal number
as an arithmetic operand is the illegal condition set,

STORE AX REGISTER

FST M X 33MMMMM

e Contents of AX-Register replace contents of M and M+1 if M is even
e Contents of AX-Register are not changed .

e Contents of AX-Register 0-19 are stored in M if M is odd and then the contents of
AX 20-39 are written over 0-19 in the same location M.

Test-and-Branch Instructions

All AAU test-and-branch instructions are indicated by BAR in the Operation field followed by a
3-letter mnemonic code in the Operand field of the General Assembly Program coding sheet.
Test-and-branch instructions interrogate the AAU for specific conditions which, if true, cause
the next sequential instruction to be executed. If false, the second sequential instruction is
executed. A 7 must be shown in the X field of the coding sheet.

Each test—and-brénch instruction is described below,

BRANCH ON AAU READY BRANCH ON AAU NOT READY

BAR BAR 7 2514720 BAR BAN 7 © 2516720

The AAU is tested to determine if it is ready |The AAU is tested to determine if it is not
to receive an instruction. ready to accept an instruction,

BE-255

BRANCH ON AAU MINUS

BRANCH ON AAU PLUS

2514721

BAR BMI 7

‘BAR

BPL 7 2516721

The AX-Register is tested for a minus sign
in bit position 0, if in the fixed-point mode or
for a minus sign in bit position 20, if in the
floating -point mode,

BRANCH ON AAU ZERO

The AX-Register is tested for a plus sign in
bit position 20 (sign of the mantissa) if in the
floating-point mode or for a plus sign in bit
position 0, if in the fixed-point mode,

BRANCH ON AAU NOT ZERO

BAR BZE 7 2514722

BAR BNZ 17 2516722

The AX-Register is tested for total zero content,

BRANCH ON OVERFLOW

The AX-Register is tested for nonzero content,

BRANCH ON NO OVERFLOW

2514723

BAR BOV. 7

BAR BNO 7 2516723

The OVERFLOW indicator is tested for the
on condition (indicator not reset),

The OVERFLOW indicator is tested for the
off condition (indicator not reset),

NOTE: These are not tests for the OVERFLOW HOLD indicator,

BRANCH ON UNDERFLOW

BRANCH ON NO UNDERFLOW

BAR BUF 7 2514724

BAR BNU 7 2516724

The. UNDERFLOW. indicator is tested for an
on condition (indicator is not reset).

The UNDERFLOW indicator is tested for an
off condition (indicator is not reset),

NOTE: These are not tests for the UNDERFLOW HOLD indicator,

BRANCH ON OVERFLOW HOLD ON

BRANCH ON OVERFLOW HOLD OFF

BAR BOO 7 2514725

BAR BON 7 2516725

The AAU is tested for the OVERFLOW HOLD
on, If the indicator is on, it is turned off,

BRANCH ON UNDERFLOW HOLD ON

The AAU is tested for the OVERFLOW HOLD
off, If the indicator is on, it is turned off,

BRANCH ON UNDERFLOW HOLD OFF

BAR BUO 7 2514726

BAR BUN 7 2516726

The AAU is tested for the UNDERFLOW HOLD
on, If the indicator is on, it is turned off,

The AAU is tested for the UNDERFLOW HOLD
off, If the indicator is on, it is turned off.

BE-258

BRANCH ON ERROR BRANCH ON NO ERROR

BAR BER 7 2514727 BAR BNE 7 2516727

The AAU is tested for either the OVERFLOW,
UNDERFLOW, or DIVIDE CHECK indicators off
(indicators are not reset),

The AAU is tested for either the OVERFLOW,
UNDERFLOW, or DIVIDE CHECK indicators
on (indicators are not reset),

NOTE: These are not tests for the OVERFLOW HOLD or UNDERFLOW HOLD indicators. The
divide check tested by this command is an internal “instruction divide check.” The program
accessible DIVIDE CHECK is a “hold” type indicator, whereas the internal divide check is not,

BRANCH ON DIVIDE CHECK ON

BRANCH ON DIVIDE CHECK OFF

BAR BDC 7 2514730

BAR BDN N 2516730

The DIVIDE CHECK indicator is tested for
an on condition, If the indicator is on, it is

turned off,

BRANCH ON ILLEGAL NUMBER

CHECK indicator is tested for
If the indicator is on, it is

The DIVIDE
an off condition,
turned off,

BRANCH ON NO ILLEGAL NUMBER

BAR. BIL 7 2514731

BAR BNI 7 2516731

The AAU illegal number condition is tested

for an on condition,

The AAU illegal number condition is tested
for an off condition,

NOTE: If the illegal number is on, it is turned off by either of these instructions,

BRANCH ON FIXED-POINT MODE ON

BRANCH ON FIXED-POINT MODE OFF

BAR BFX 7 2514732

BAR BNX 7 2516732

The FIXED-POINT indicator is tested for an

on condition,

The FIXED-POINT indicator is tested for an
-off condition,

NOTE: If the indicator is on, it is not reset by either of these instructions,

BRANCH ON UNNORMALIZED
FLOATING-POINT ON

BRANCH ON UNNORMALIZED
FLOATING-POINT OFF

BAR BUP 7 2514733

BAR BNP 7 2516733

The FLOATING-POINT UN-NORM indicator
' is tested for an on condition,

The FLOATING-POINT UN-NORM indicator
is tested for an off condition.

NOTE: If the indicator is on, it is not reset by either of these instructions,

GE-258

S

BRANCH ON NORMALIZED FLOATING
FLOATING-POINT ON

BRANCH ON NORMALIZED
FLOATING-POINT OFF

BAR BNF 7 2514734

BAR BNN 7 2516734

The FLOATING-POINT NORMAL indicator is

The FLOATING-POINT NORMAL indicator is
tested for an off condition.

tested for an on conditio_n.

NOTE: If the indicator is on, it is not reset by either of these instructions,

PROGRAM CONSIDERATIONS

Unlike the requirements for peripherals with controllers having access to the central processor
through its priority control, the AAU is always connected to the central processor and only a
SET instruction is required to select the mode of operation,

Setting tHe Calculation Mode

Once a SET MODE instruction is given, it need not be given again until the programmer wants
to change modes. The instructions required to perform the desired arithmetic operations follow
the mode setting instructions, To illustrate, Figure 18 shows a program which begins calculations
in the normalized floating-point non-trapping mode and then switches to the unnormalized floating-
point non-trapping mode as directed by the new SET instruction shown on line 12,

General Assembly Program Coding:

Symbol Opr Operand X REMARKS

3 BN N A Y S KNI R) A R) X
1 S, TAR TS ETINFLPOINT Set normalized floating-point mode
2 . , FLDIDR \
3 e rFSsSuUjcrR__, :
4.) L FSTITFM 1, . . |
¥ . . (SR . .
sl A
7 .))] .
ol AN
ol L [. -
10 . . ‘ $‘$' ‘ ‘ . ‘ ‘
"l . F.S.T{AD.I .D.O,
I ,_|S. E. T|U,F.L,P.O, 1 ,N,T| |Setunnormalized floating-point mode __J
13 e . |lFuDplca |]
14 . L “(', Ly l
15’ o .). o ,
16

Nm

)

Setting the Trapping Mode

The trapping mode, a standard feature of the GE-235 AAU, operates in a manner similar to
the Automatic Program Interrupt (API). Automatic Program Interrupt is explained in the GE-235
Central Processor Reference Manual (CPB-374).

API is not affected by the trapping mode, If a peripheral device terminates on exactly the same
memory cycle in which a trap occurs, the program interrupt (API) will be taken first. The
AAU trap signal is not dropped until the trap is executed, but the trap is not executed if the
central processor is executing the priority program. The first instruction in sequence--after
program control is returned to the main program (from API mode)--will not be executed, the
AAU trap will be executed,

If a peripheral device should become ready while the central processor is executing the trap
routine, control is transferred to the API routine and executed, Upon completion of the API
routine, control is transferred back to the trap routine,

An API routine should not use the trap mode, I it does, the trap interrupt does not take place,
It is remembered however, and the trap interrupt is executed after control is returned to the

central processor from the API routine,

When the trapping mode is entered by a SET TRPMODE instruction, operation is as follows:

e The OVERFLOW HOLD, UNDERFLOW HOLD and DIVIDE CHECK indicators (an illegal
number sets the UNDERFLOW indicator) are neither reset nor disabled

e If the programmer desires to test these indicators while in the trapping mode, he
should issue a reset indicators (RIN)instructionatthe same time that the SET TRPMODE
is given, If any of the indicators are on at the time that the SET TRPMODE instruction
is given, the AAU will not take trapping action

e Trapping action is only taken on subsequent AAU arithmetic operations

Interrogation of any of error indicators causes them to be reset, the reset feature
operates the same in both trap and non-trap modes

® At the completion of each AAU arithmetic instruction, the AAU checks itself to see
if that instruction resulted in an overflow, underflow, or divide check condition:

1. I the instruction results in an overflow, the contents of the P-Register (address
of the next instruction) are stored in location 211g . and an unconditional branch
to location 205g is executed.

9. If the instruction results in an underflow, the contents of the P-Register is stored
in location 211g, and a branch to location 206g is executed,

3, If the instruction is not executed because of a divide check error, the contents
of the P-Register is stored in location 211g, and a branch to location 20'?8 is
executed, ‘

NOTE: When operating in the non-trapping mode, the divide check error will
get the OVERFLOW and OVERFLOW HOLD indicators, However, when operating
in the trapping mode only the DIVIDE CHECK indicator is set,

BE-259

4. Bits 0-4 of the word at location 211g where the contents of the P-Register are
stored has special meanings and are set/reset in accordance with the conditions that
exist within the central processor at the time of the interrupt, These conditions

are as follows:

Bit

0

Set if

KON

TON

REMEMBER CARRY

DECMODE

OVERFLOW

is in effect
is in effect
is on (central processor)
ig in effect

is on (central processor)

These indicators enable the programmer to restore, at the completion of the
trap routine, the conditions that existed at the time of the interrupt

e The contents of the G-Register (Index group number) are not disturbed by the trap.
The modification group in effect before the trap exit will still be in effect after the
trap, An additional index group (34) in locations 2108-2138 is provided for use by the

This index group is established automatically when the central processor

accepts the trap-interrupt, '

trap routine,

Prior to exiting from a trap, a SET TRPMODE instruction must be issued,

If it is not desired to continue in the trap mode, the SET TRPMODE must be followed by a
Additional trap interrupts are ignored and not remembered while

SET NTPMODE instruction,
executing a trap routine.

r

The following assembly language coding will cause the indicators to be set for testing during

a trapping routine,

Symbol Opr Operand X REMARKS
1 zb]4r5{e s [» [10]12]1s] 1a] 15[18] 17 te |19 [20 |31
| | ‘ i S(EJ_T TlRLP[M[O:ﬁD:EI
, IR IN B "Reset Indicators"
, , FLDMP .)
pTE——

~

3 The following assembly language coding will cause a divide check error and demonstrates utiliza-
tion of the trapping mode: .

|
e A . e N\
S TAR T |S ETINNFL,POI NT Sets Arithmetic Mode \
. S ETITRP MODE,
F LDINNUM, ., , ., . Load Dividend
L y FDVIZERO, . . , Divide by zero - next instruction from 207;
NEX,T, ., |FS ,TIANS WER, , trap

L L 1 J, I ! I 1 L L 1 | "
’ ' L : s : . L : L !) : I

XXX X XXX | | Coding to correct Divide Check Error
’[L L 1 S. 1 + sl 1 1 ! L
IS ETITRPMODE, Must be given prior to return I
RETURNIBRTUI|O L 1 | Return to "NEXT" - Location 2118 /
i I L : 1 1 1 1 i }
= sl ¢ ! | L
%:v
’
o
1=

BE-2858

3. OPERATING THE GE-235 AAU

OPERATING LOGIC

Once the AAU is granted access to memory, two data words are brought from memory through
the central processor M-Register and checked for parity. Each data word then enters a buffer
register in the AAU where the 40-bit double word format--in the predetermined mode for the
AAU--is formed,

The AX, BX, QX , and IX-Registers and the adder--SX--perform functions similar to their
counterpart registers--A, B, Q, and I--in the GE-235 central processor,

The GE-235 central processor performs the function of instruction retrieval. An immediate
decision point is reached if the retrieved instruction is an AAU instruction; that is, if bits
S and 1 are both ones. If the retrieved instruction has either of the two undefined operation
codes (34g or 37g), an error condition results,

If the instruction is either an arithmetic or a load/store instruction, any of which may be index
word modified by the central processor, then any indexing function required is performed. After
possible indexing, the instruction is executed by the AAU using the central processor I-Register
as the memory operand address register,

If the instruction is one of the AAU test-and-branch instructions (BAR), the central processor
interrogates the various status indicators. The AAU replies to the query, and the central pro-
cessor forms the appropriate branching decision,

The entire process is synchronous, During the period that the AAU is executing an instruction,
* the central processor is inhibited from retrieving the next instruction. Each instruction in turn
is executed.

AAU CONTROLS AND INDICATORS

The GE-235 AAU operator panel is composed of register displays, mode and alarm indicators
and operating switches, A detailed description follows Figure 19, showing the operator panel
of the AAU.

GE-258

GENERAL @D ELECTRIC

@@@'@@O@OO@@O@ ©©©©©©©©©©©©©©©©©©©©©©©©©©Q

21 22 23 26 25 2 27 28 29 30 31 32 33 34 3% 37 38

® @OO@@@OO@@OO@@@ O'@@@OOO@%@O@ 0000000000000

3 4 5 6 7 8 20 % 10 11 12 13 1& 15 16 17 18 19 21 22 23 24 25 26 27 28 29 30 3l 32 33 3% 35 36 37 38 39

10N

O 000 0000

16 17 18 19

Figure 19, GE-235 AAU Control and Indicator Panel

AX- and QX-Register Indicators

The operator can see the contents of the AX- and QX-Registers by the display lights along
the top of the panel, The light for the sign of the mantissa in both the AX- and QX-Registers
is labeled Sy, and is placed before the mantissa group rather than in bit position 20. This
is' done to present a more meaningful picture of the floating-point word and to expedite reading
the contents of the registers in floating-point modes, In the fixed-point mode, where the grouping
of bits into mantissa and exponent has no meaning, the sign of the mantissa, bit 20 is ignored,

The AX and QX-Registers can be read visually only during a pause or a halt in the program,
The contents of the registers assist the programmer or service engineer in diagnosing trouble
in either the program or the equipment, The operator should note all information on the panel
at the time of an unprogrammed halt, The sign is negative when the light is on and positive
when the light is off, Line divisions between the register lights assist in reading the register
contents in octal numbers, The following example illustrates reading one of these registers,
The indicators can be converted to octal and written in octal,

Example:

ooolcnoloooloo‘oloooooolocolooolooolooo
011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

o

Se l——|—Exponeqt Sm v - Mantissa
o e o 0 0o o e ofe [
s 1 2 3 4 5 6 7 8|91

11
- 2

11
3

1 1 1

0 11

1 11
4 3

This information would be written as (-235+610 571 014 3)g.

GE=-285

POWER ON - Switch

This switch turns the power on in the AAU when the switch is pressed. It glows yellow when
power comes on,

POWER OFF - Switch

When this switch is pressed the POWER ON switch lights goes out and power is turned off
for the AAU,

MODE - Indicators

There are four mode indicator lights, one for each of the four operating modes. When the pro-
gram specifies the mode, the applicable mode indicator is lit,

When the program makes an unscheduled halt, the operator should note which of the four in-
dicators is lit,

FLOATING NORMAL, When illuminated it indicates the AAU is operating in normalized floating-
point mode,

FLOATING UN-NORM, When illuminated it indicates the AAU is operating in unnormalized
floating-point mode.

FIXED, When illuminated it indicates the AAU is operating in fixed-point mode,
TRAP. When illuminated it indicates the AAU is operating in trapping mode,

INSTRUCTION - Indicators

The display lights of the instruction register show the contents of the IX-Register for bits
2, 3, and 4 (of the operation code) and bits 16, 17, 18, and 19 (of the operand).

The entire instruction is sent from the central processor to the AAU, however, since all general
instructions for AAU operations are code 3 (bits 0-1) and bits 5-15 are all zeros, only those
bits affecting AAU operation are displayed.

ALARM - Indicators

There are four alarm indicators which indicate to the operator any unusual conditions that have
been encountered as a result of an arithmetic operation,

OVERFLOW/UNDERFLOW is a split indicator and is illuminated in its area for the conditions
as shown on the next page.

BE-258

Overflow,

e In the fixed-point mode is caused by a positive sum requiring in excess of 38 significant
bits

e In the floating-point mode is caused by a positive exponent requiring in excess of 8
significant bits

e Is caused upon the detection of a divide check error condition provided the AAU is
operating in the non trapping mode, It is not set if the AAU is operating in the trapping
mode,

Underflow,

e In the fixed-point mode is caused by a number whose decimal value is -238 or less

e In the floating-point mode is caused by an exponent whose decimal value is -256 or
less

Both Alarms Are Reset by:

e The execution of any AAU instruction, except a test and branch (BAR) instruction
® The depression of the CLEAR switch on the AAU
® The depression of the RESET ALARM switch on the central processor.

OVERFLOW HOLD is turned on in the same manner as the OVERFLOW, The OVERFLOW
HOLD alarm will be set on a detection of overflow regardless of the trap mode setting.

Alarm is Reset by:
e Either of the overflow hold test (BAR-BOO or BAR-BON) instructions
@ The overflow hold reset (ROV) instruction
° ’i‘he reset indicator (RIN) instruction
e Depressing the CLEAR switch on the AAU
e Depressing the RESET ALARM switch on the central ﬁrocessor.
UNDERFLOW HOLD is turned on in the same manner as the UNDERFLOW, The UNDERFLOW

HOLD alarm is also set upon a detection of any illegal number specified as an operand. It
also is set regardless of the trap mode setting,

Alarm is Reset by:

e Either of the underflow hold test (BAR-BUO or BAR-BUN) instructions,

e The underflow hold reset (RUN) instruction

BE-288

® The reset indicator (RIN) instruction
@ Depressing the CLEAR switch on the AAU

® Depressing the RESET ALARM switch on the central processor

DIVIDE CHECK is turned on if an attempt is made to divide any number by zero,

® In the fixed-point mode, it is turned on if the magnitude of that part of the dividend in the
AX-Register is equal to or greater than the magnitude of the divisor

o In the floating-point mode it is turned on if the magnitude of the dividend mantissa
is equal to or greater than twice the magnitude of the divisor mantissa

@ The alarm is set regardless of the trap mode setting,

Alarm is Reset by:

e The reset indicator (RIN) instruction
e Either of the divide check test (BAR-BDC or BAR-BDN) instructions
o Depressing the CLEAR switch on the AAU

e Depressing the RESET ALARM switch on the central processor

AAU READY - Indicator

This indicator is illuminated whenever the AAU is ready to execute an instruction., It means
that the AAU power is on and that the AAU is not in a test mode.

CLEAR -~ Switch
This switch clears and resets the following:
e The OVERFLOW alarm
e The OVERFLOW HOLD alarm
° r‘I‘he UNDERFLOW alarm
e The UNDERFLOW HOLD alarm
. ’fhe DIVIDE CHECK alarm
e The illégal number condition (INDERFLOW)
o The AX-Register to zero
e The QX-Register to zero
e The mode of operation is switched to normalized floating-point mode

e The AAU is set to the non-trapping condition

BE-2858

CENTRAL PROCESSOR AAU INDICATORS

There are 8 AAU indicators placed above the operator’s panel of the central processor, They
are for the convenience of the operator who, due to the arrangement of the equipment, might
not be able to see the operator’s panel on the AAU, The indicators show the same condition as
the indicators on the AAU. Figure 20 shows the relationship of the AAU indicators and the
control panel of the central processor,

AAY ar | FLOATING FLOATING
READY HORMAL i-oRY

CP ALERT

| eriorrry

CR ALERT

Figure 20, Central Processor AAU Indicators

GE-288

)

APPENDIX A

AAU PROGRAM LIBRARY ROUTINES

internal Data Routines

Fixed-Point BCD to Binary--Provides binary-coded-decimal con-
version to binary for AAU operations,

Floating -‘Point Binary to BCD--Provides floating-point binary
to floating-point BCD conversion with rounding,

Floating-Point Binary to BCD--Provides rapidfloating-pointbinary
to floating-point BCD conversion, utilizing the decimal (BCD)
arithmetic option

Math Routines

Bessel Functions of Orders 0 and 1--The purpose of these sub-
routines is to evaluate Bessel functions of types I, J, K, and Y
for orders 0 .and 1 for specified ranges of the argument, as
follows:

Library Number

CD225C1.002

CD225C2,006

CD225C2.008

CD225D5.004

--- Bessel Function Type Range of the Argument
I.1 0<X< o
0
Iy J 0<X<w
KO, K1 0<X<=>
YO’ Y1 0<X<

Complex Arithmetic with Trace Option--Provides a means of
handling complex floating-point numbers by means of a package
of subroutines,

Fixed-Point - ARCTANGENT--Computes the arctangentin radians
of a fixed-point number, The binary point is considered to be
at 8; thus the range is between -255 and +255,

Fixed~Point»y- EXPONENTIAL--Computes- oX where ois 2, e, or
10, and x is the independent variable in fixed-point form ata
binary point of 8,

Fixed-Point - LOG (10, 2, e)--Computes log oX whereais 2,
e, or 10, and x is the independent variable. The input and out-
put are fixed-point numbers at a binary point of 8, '

CD225D1.004

CD225D2.024

CD225D2.028

CD225D2.026

BlE-288

Fixed Point - SIN COS--Computes the sine or cosine of a fixed-
point argument in radians between -256 and +256,

Fixed-Point - SQUARE ROOT--Computes the square root of a
positive fixed point number., The binary point is considered
to be at the far left or at zero, This routine takes the square
root of any positive 38-bit number,

Floating-Point - ARCTANGENT-~Computes the arctangent in
radians of normalized floating-point number, in the range of
I8, 1285, ’

Floating-Point - EXPONENTIAL--Computes oX where o is 2, e, or
10, and x is the independent variable in normalized flpating-point
form,

Floating-Point - LOG (10, 2, e)--Computes log oX where ois 2,
e, or 10, and x is the independent variable in normalized floating-
point form.

Floating-Point - SINE/COSINE--Computes the sine or cosine of
a normalized floating-point argument in radians,

Floating -Point - SQUARE ROOT--Computes the square rooqt gf
a normalized floating-point number, in the range of 0 to 925 .

GAMMA Function--Evaluates the GAMMA function for all real
arguments except those near integral negative values where
the function goes to infinity, :

Least Squares POLYNOMIAL CURVE FIT--Fits polynomials up
to tenth order through a points (Xj, Y1), (x?t Yg), (X, Yp)
by the method of least squares, and to calculate residuals and total
variance to facilitate choosing the best fit,

Least Squares POLYNOMIAL CURVE FIT Program--Fits poly-
nomials up .to tenth order through a maximum of 400 points
(Xj, Yj). Standard error, variance, and residuals are provided,

LINEAR Programming--Finds the optimum solution of a group
of restrictive linear equations, The solution permits efficient
allocation of limited resources to meet desired objectives,

LINEAR Simultaneous Equations--Solves a set of n linear real
simultaneous equations in n unknowns whose coefficients are
represented in normalized floating-point form and to store the
results in the same form,

MATRIX Transpose--Finds the transpose of a real matrix A(m,n)
whose elements are double words and to store the results in the
same form in matrix B(n,m),

Multiple LINEAR Regression--Calculates entirely in floating-
point binary, the representation having a significant part of 30
binary positions and sign, The accuracy is just beyond that of
9 decimal digits,

CD225D2,020

CD225D2,022

CD225D2.010

CD225D2,012

CD225D2.014

CD225D2.008

CD225D2,006

€CD225D5.006

CD225D6.002

CD225D6,004

CD225D%7.002

CD225D4,012

CD225D4,006

CD225D3,002

GlE-258

Normalized Floating-Point Matrix Inversion--Computes the inverse CD225D4.010
of an N x N matrix, A, whose elements are real and represented

in normalized floating-point form, and to store the result, B,

in the same form.

Normalized Floating-Point Matrix Multiply--Multiplies a normal- CD225D4.004
ized floating-point real scalar s by a real matrix A(m,n) whose
elements are represented in normalized floating-point form, and
to store the resultant matrix B(m,n) in the same form. CD225D4.004

Normalized Floating-Point Matrix Add or Subtract--Computes CD225D4.002
the sum or difference of two m x n real matrices, A B, whose

elements are represented in normalized floating-point form and

to store the result C in the same form.

Normalized Floating-Point Scalar Multiply--Multiplies a normal- CD225D4.008
ized floating-point real scalar s by a real matrix A(m,n) whose

elements are represented in normalized floating-point form and

to store the resultant matrix B(m,n) in the same form. ‘

Roots of POLYNOMIAL--Calculates all n roots of the polynomial. CD225D5.002

Simulated Floating-Point--Simulates the AAU in its floating- CD225D1.000
point mode as may be practical with software.

Input/Output Routines

Floating Field Input--Reads cards and convert to binary the CD225E1.004
data punched in any convenient columns of the cards. The data
may be fixed- or floating-point, decimal, octal or alphanumeric.

General Purpose Output Program--Sets up information for out- CD225E1.006
put to the on-line punch and/or to the on-line printer. Output
is buffered.

Packed Data Reading Program--Reads fixed-format decimal cards CD225E1.008
and to convert the fields into BCD, floating-point or fixed-point.

Also to check, attheuser’soption, afield of (at most) 18 characters

on each card in order to verify that the card does indeed belong

to the correct deck.

Compilers/Translators
WIZ Compiler Mod 1--Algebraic compiler CD225H2.002

WIZ Two Compiler--Algebraic compiler CD225H2.004

Assembly Systems

ZOOM--A Macro Assembler CD225F1.002

GE-285

APPENDIX B

LIST OF INSTRUCTIONS

The abbreviations used in the mnemonics of the Operand and Symbol X field of the General
Assembly Program (GAP) are as follows:

GE-255

Opr Operand X
BAR BAN

BAR © BAR 7
BAR BER 7
FBAR BDC 7
BAR BDN 7
BAR = BIL 7
BAR EFX 7
BAR BMI 7
BAR BNE 7
BAR BNF 7
BAR BNI 7
BAR BNN 7
BAR BNO | 7
BAR BNP 7
BAR BNU 7
BAR BNX 7
BAR BNZ 7

M Memory Location -

7 Channel Number (Priority Control)
A AAU Transfer Instruction

X Address Modification

Octal

2516720
2514720
2514727
2514730
2516730
2514731
2514732
2514721
251672
2514734
2516731

2516734

2516723
2516733
2516724
2516732

2516722

Description

Branch on AAU not ready
Branch on AAU ready

Branch on error

Branch on DIVIDE CHECK on
Branch on DIVIDE CHECK ofi
Branch on illegal number
Branch on fixed-point mode on
Branch on AAU minus

Branch on no error

Branch on normalized floating-point on
Branch on no illegal number

Branch on normalized floating-point off

Branch on no overflow

Branch on unnormalized float-point off
Branch on no underflow

Branch on fixed-point mode off

Branch on AAU not zero

Time In
Microseconds

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

Opr Operand
BAR BON
BAR BOO
BAR BOV
BAR BPL
BAR BUF
BAR BUN
BAR BUO
BAR BUP
BAR BZE
CAX

cQX

FAD M
FDV M
FILD M
FMP M
FST M
FSU M
LAQ

LQA

MAQ

NOX

RIN

ROV

BE-255

QIN

X o> >

Octal

2516725
2514725
2514723
2516721
2514724
2516726
2514726
2514733
25147122
3200005
3500005

31MMMMM

36 MMMMM

30MMMMM

35MMMMM

33MMMMM

32 MMMMM

3600002
3200002
3100002
3100005
3500004
3100004

Description

Branch on OVERFLOW HOLD off
Branch on OVERFLOW HOLD on
Branch on no overflow

Branch on AAU plus

Branch on underflow

Branch on UNDERFLOW HOLD off
Branch on UNDERFLOW HOLD on
Branch on unnormalized float-point on
Branch on AAU zero

Clear AX-Register

Clear QX-Register

Add F
N
U
Divide F
N
U

Load AX-Register
Multiply F
N
U

Store AX-Register
Subtract F
N
)

Load AX from QX
Load QX from AX
Move AX to QX
Normalize AX and QX
Reset indicators

Reset OVERFLOW HOLD

Time In

Microseconds

12

12

12

12

12

12

12

12

12

6

6

18
24-30
24-30
96
66-178
66-172
18
30-60
24-48
24-48
18

18

24-30
24-30

\\
N

Opr Operand
RUN

SET FIXPOINT
SET NFLPOINT
SET NTPMObE
SET TRPMODE
SET UFLPOINT
XAQ

GE-238

X Octal

A

3200004
3500010
3100010
3200001
3100001
3200010
3500002

Description

Reset UNDERFLOW HOLD

Set fixed-point mode

Set normalized floating-point mode
Set trapping mode off

Set trapping mode on

Set unnormalized floating-point mode

Exchange AX and QX

Time In

Microseconds

6

6

/ APPENDIX C

AAU HALT CONDITIONS

The program will hang-up and the central processor will halt when the central processor is in
the AUTO mode and the following conditions occur:

35!
e The PRIORITY alarm light is red on the central processor console

Corrective Action

Possible Cause

Return the program with notification to

A 34XXXXX or 37TXXXXX instruction
the programmer.

was given, ,

e The PRIORITY alarm light on the central processor console may or may not come on.

Corrective Action

Possible Cause

Return the program with notification to

A program which had an AAU used
the programmer.

channel 7 for another peripheral and
a SEL instruction called for channel

7.

.)
-

BE-288

